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SUMMARY

The numerical simulation of elliptic type problems in strongly heterogeneous and anisotropic media
represents a great challenge from mathematical and numerical point of views. The simulation of flows
in non-homogeneous and non-isotropic porous media with full tensor diffusion coefficients, which is
a common situation associated with the miscible displacement of contaminants in aquifers and the
immiscible and incompressible two-phase flow of oil and water in petroleum reservoirs, involves the
numerical solution of an elliptic type equation in which the diffusion coefficient can be discontinuous,
varying orders of magnitude within short distances. In the present work, we present a vertex-centered
edge-based finite volume method (EBFV) with median dual control volumes built over a primal mesh.
This formulation is capable of handling the heterogeneous and anisotropic media using structured or
unstructured, triangular or quadrilateral meshes. In the EBFV method, the discretization of the diffusion
term is performed using a node-centered discretization implemented in two loops over the edges of the
primary mesh. This formulation guarantees local conservation for problems with discontinuous coefficients,
keeping second-order accuracy for smooth solutions on general triangular and orthogonal quadrilateral
meshes. In order to show the convergence behavior of the proposed EBFV procedure, we solve three
benchmark problems including full tensor, material heterogeneity and distributed source terms. For these
three examples, numerical results compare favorably with others found in literature. A fourth problem,
with highly non-smooth solution, has been included showing that the EBFV needs further improvement
to formally guarantee monotonic solutions in such cases. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The task of modeling and simulating diffusion type problems in heterogeneous and anisotropic
media can be a great challenge from a mathematical and numerical point of view. Abrupt variations
in the permeability field (i.e. the diffusion coefficient) are common when modeling and simulating
fluid flow in petroleum reservoirs and aquifers. Over the last decades, much effort has been spent
in numerical methods that make use of unstructured meshes, such as the finite element method
(FEM) and the finite volume method (FVM), due the fact that these methods allow for a better
modeling of complex geometrical features and because they can easily incorporate mesh adaptive
procedures. When handling conservation laws, FVM is particularly attractive as it conserves mass,
globally and locally. It is well known that traditional two-dimensional ‘five point’ finite difference
methods are unable to handle full tensors or non-orthogonal meshes. Besides, it can be proved that
these schemes introduce first-order errors in the approximation of flux terms between discontinuous
materials [1], making these methods unsuitable for the modeling and simulation of diffusion type
problems in highly heterogeneous and anisotropic media.

Locally conservative schemes, such as the mixed finite element method (MFEM) and flux
continuous finite volumes (FCFV), also called multipoint flux approximations (MPFA), have been
extensively studied in literature [1–5]. In the context of flux flow in porous media, the recently
developed FCFV are defined by assuming continuous pressures (pointwise or full continuity) and
normal fluxes across control volumes (CV) interfaces [1, 3–5]. Despite of the high computational
costs associated with these methods, particularly the MFEM, both methods are capable of handling
full tensor elliptic equations in highly heterogeneous media using structured or unstructured meshes.
It is worth remembering that the FEM, which is globally but not locally conservative (i.e. at
the element level), requires some kind of flux recovery in order to formally guarantee local
conservation [6].

In the present paper, we describe a node-centered finite volume formulation in which median
dual CV (Donald’s dual) are used with an edge-based data structure [7–12] in such a way that
the geometrical coefficients are associated with the edges and nodes of the primal mesh. This
formulation, which is capable of handling structured or unstructured meshes, and non-homogeneous
and anisotropic media, has been chosen due to the fact that vertex-centered finite volume schemes
are usually superior to the cell-centered schemes in terms of memory usage [7, 10], and because
edge-based data structures are known to be computationally more efficient than their element-based
counterparts [7] and also because they allow for the introduction of one dimensional like upwinding
[13] when models incorporating advective transport are devised, such as in two-phase flows in
porous media [11, 12]. In the present paper we have concentrated on the study of the accuracy
and the convergence behavior of an edge-based finite volume scheme for the solution of elliptic
equations with full tensor discontinuous coefficients, comparing it with other well-established
formulations through the solution of some benchmark problems.

2. MATHEMATICAL FORMULATION

In the two-dimensional model, the equation that defines an elliptic problem in a heterogeneous
and anisotropic medium can be written as

∇ ·(−K˜ (x)∇u)= f (x) with x=(x, y)∈�⊂�2 (1)
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where

K˜ (x)= K˜ =
(
Kxx Kxy

Kyx Kyy

)
(2)

is a symmetric matrix that is allowed to be discontinuous through the internal boundaries of the
domain �.

In order to formally define an elliptic problem [14], we further assume that

Kxx Kyy�K 2
xy (3)

Integrating Equation (1) and applying the divergence theorem to its left side, yields∫
�

(−K˜ ∇u) ·n��=
∫

�
f �� (4)

Equation (4), which is the integral form of Equation (1), defines, for instance, the pressure field
for the fluid flow of oil and water in heterogeneous and anisotropic petroleum reservoirs or for the
transport of contaminants in aquifers [10–12].

3. NUMERICAL FORMULATION

As previously mentioned, in the present work, we have adopted a node-centered finite volume
procedure with median dual CV built over a triangular primary mesh, in which the coefficients
necessary to our calculation are associated with the edges and to the nodes of the primary mesh
[7, 8, 10–12, 15]. These edge and node coefficients are pre-computed in a pre-processing stage
from the more traditional element data structure, which are commonly used in the FEM context.

For a general node I of the mesh, using the EBFV, Equation (4) can be approximated as∑
L I∈�

F�
IJL ·CIJL + ∑

L I∈�
F�
IJL ·DIJL = f I VI (5)

where FIJL =−K˜ ∇uIJL is the flux function defined at the control surface, VI is the volume of
the CV surrounding node I , the upper index � represents approximations that are associated with
every edge IJL of the primary mesh, which is connected to node I , � refers only to boundary edges
connected to that node, the summation

∑
L I∈� is performed over the internal edges connected to

node I and
∑

L I∈� is only performed over boundary edges. The geometrical coefficients CIJL and
DIJL are defined as

CIJL = AK+1nK+1+AKnK

DIJL = ALnL
(6)

In Equation (6), AK , AK+1 and AL are the areas of the control surfaces associated with the
control surface normals nK , nK+1 and nL . Further details can be found in [9, 11].

In order to approximate the mid-edge gradients/fluxes required in Equation (5), different strate-
gies can be devised [16]. The classical edge-based approach involves using a simple two-point flux
approximation (TPFA), in which mid-edge fluxes are formally second-order accurate only if the
media is isotropic and the straight lines that connects two adjacent nodes and the control surfaces
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are orthogonal to each other, as in the case of the Voronoi tessellations [4] and structured quadrilat-
eral meshes. Schemes using such approaches are equivalent to the so-called control volume finite
difference methods.

In the present paper, we use a different approach that has been originally devised by Crumpton
et al. [8] for the discretization of diffusion terms in the Navier–Stokes equations. In this approach,
in order to obtain the final discrete system of equations, we first compute nodal gradients as
functions of the discrete scalar field, and then we use these gradients to compute the elliptic terms
in a second step [8–12, 15]. The gradients computed in the first step in a finite volume fashion are
used to calculate the cross diffusion terms, which naturally arise when we are handling full tensor
problems (i.e. Kxy =Kyx �=0.0) or when we are using non-orthogonal meshes, as both problems
can be seen as equivalent [1].

In order to compute the nodal gradient, we make use of the divergence theorem to integrate the
gradient of the scalar variable at node I , obtaining∫

�I

∇uI��I =
∫

�I

u In�� (7)

Assuming that the average gradient ∇uI in the CV can be defined as

∇uI =
(∫

�I

∇uI��I

)/
VI (8)

Similarly to Equation (5), and by dropping out the over bar, we can write the discrete form of
Equation (7) as

∇uI VI =
( ∑
L I∈�

u�
IJLCIJL + ∑

L I∈�
u�
IJLDIJL

)
(9)

Additionally, we adopt the following linear edge approximations:

u�
IJL = uI +uJL

2
and u�

IJL = 5uI +uJL

6
(10)

Inserting Equation (10) in Equation (9), we obtain

∇uI = 1

VI

[ ∑
L I∈�

CIJL
(uI +uJL )

2
+ ∑

L I∈�
DIJL

(5uI +uJL )

6

]
(11)

It is worth emphasizing that the boundary term (u�
IJL

) defined in Equation (10) assumes a
piecewise linear interpolation for boundary fluxes similar to a FEM type approximation, being
formally second-order accurate in space when linear triangles are used [7]. The more traditional
one-point flux approximation normally used in EBFV codes (u�

IJL
=uI ) could also be used with

some loss of accuracy along boundary nodes and their immediate neighbors [7, 15].
3.1. Non-isotropic and non-homogeneous media

In the case of heterogeneous media, fluxes definitions over the control surfaces located at the
interface between different materials can be ambiguous [17]. If gradients computed as described in
Equation (11) are directly used for flux computations, an inconsistent flux would be obtained
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Figure 1. Two-dimensional control volume split by two different materials.

along the control surfaces adjacent to material discontinuities. In order to circumvent this problem,
gradients are recovered in a sub-domain by sub-domain approach. First, material properties
(e.g. permeability) are associated with sub-domains. For each physical sub-domain, we store a
list of edges and nodes and their associated geometrical coefficients. For the mesh considered in
Figure 1, it is necessary to include new geometrical coefficients DIJL = ALnL and DIJM = AMnM ,
which are quantities related to the internal boundary edges in order to properly reconstruct gradi-
ents and fluxes in a particular sub-domain. These coefficients are used to properly recover the
gradients for each physical sub-domain of the problem, allowing for a continuous by parts gradient
computation. Therefore, for heterogeneous media, we can rewrite Equation (11) as

∇u�R
I = 1

V�R
I

[ ∑
L I (�R )

C�R
IJL

(uI +uJL )

2
+ ∑

L I (�RE )

D�R
IJL

(5uI +uJL )

6
+ ∑

L I (�RI )

D�R
IJL

(5uI +uJL )

6

]
(12)

In Equation (12), ∇u�R
I is the nodal gradient and V�R

I is the control volume of a node I

associated with the sub-domain �R , and C�R
IJL

and D�R
IJL

refer to the geometrical coefficients of
the edge IJL associated with the sub-domain �R . Finally, it is worth noting that in the present
sub-domain by sub-domain approach, D�R

IJL
refers to both external and internal boundary edges,

and �RE and �RI refer, respectively, to loops over external boundary edges and internal edges
between multiple sub-domains. In order to compute the fluxes of Equation (5), we define a local
frame of reference, in which one axis is placed along the edge direction (P), and another axis (N )
is orthogonal to the direction (P), and split the gradients into two components

∇u�R
IJL

=∇u�R(N )
IJL

+∇u�R(P)
IJL

(13)

The component of the gradient parallel to the edge direction ∇u�R(P)
IJL

is replaced by a local

second-order central difference approximation ∇u�R(P∗)
IJL

, see [10–12, 14, 15], and Equation (13)
may be rewritten as

∇u
�∗

R
IJL

=∇u�R(N )
IJL

+∇u�R(P∗)
IJL

(14)
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where

∇u�R(P∗)
IJL

= (uJL −uI )

|�IJL |
LIJL (15)

In Equation (15) |�IJL | and LIJL =IJL/|�IJL | are, respectively, the length and the unity direc-
tional vector of the edge IJL . From Equation (13), the normal component of the gradient associated
with the edge IJL can be computed as

∇u�R(N )
IJL

=∇u�R
IJL

−∇u�R(P)
IJL

(16)

where the gradient along the edge direction is given by

∇u�R(P)
IJL

=(∇u�R
IJL

·LIJL )LIJL (17)

with

∇u�R
IJL

= ∇u�R
I +∇u�R

JL

2
(18)

and the nodal gradients ∇u�R
I and ∇u�R

JL
are computed in a pure finite volume fashion as described

in Equation (12).
Inserting Equation (17) in Equation (16) yields

∇u�R(N )
IJL

=∇u�R
IJL

−(∇u�R
IJL

·LIJL )LIJL (19)

Inserting Equation (15) and Equation (19) in Equation (14), we have

∇u
�∗

R
IJL

=∇u�R
IJL

−(∇u�R
IJL

·LIJL )LIJL + (uJL −uI )

|�IJL |
LIJL (20)

Defining the continuous ‘hybrid’ mid-edge flux function as

F
�∗

R
IJL

=−K˜
�R∇u

�∗
R

IJL
(21)

in which the term hybrid was used to indicate that one part of the mid-edge gradient is computed
using the traditional EBFV approach by averaging the nodal recovered gradients, and the other
part is computed using the compact two-point finite difference scheme. Even though this hybrid
approach may seem more complicated than both the usual TPFA and the simple nodal gradient
averaging technique, it allows for the proper calculation of the cross diffusion terms, which is
a major drawback of the TPFA, and, at the same time, it avoids the leap frog modes known as
checkerboarding or odd–even oscillations that imply that the values computed at given node are
uncoupled from the values of those nodes directly connected to it, which can occur when the
simple nodal gradient averaging is used with orthogonal equally spaced quadrilateral meshes. In
fact, it can be proved that these two usual techniques are inconsistent finite volume approximations
for the discrete Laplacian operator on general triangular meshes [16].

It is worthy mentioning that EBFV schemes are linear preserving only in simplexes (triangular in
two dimensional and tetrahedral in three dimensional) or orthogonal meshes (e.g. parallelepipeds).
In a former paper [12] we have shown that the present method exactly recovers constant gradients
when the solution varies linearly over the computational domain, i.e. it is linear preserving.
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Linear preservation guarantees that a linear variation of a variable is integrated exactly on an
arbitrary mesh. This property enforces that the order of the accuracy of the approximation is
preserved, even for irregular, distorted or adapted meshes in which elements of different sizes
and alignments are used all together. Therefore, extra care must be taken when dealing with non-
orthogonal quadrilateral meshes. In the present paper, we have only used triangular and orthogonal
quadrilateral meshes, and no study has been performed in order to evaluate the loss of accuracy
associated with the use of non-orthogonal quadrilateral meshes.

Inserting Equation (20) in Equation (21), we can write

F
�∗

R
IJL

=−K˜
�R

(
∇u�R

IJL
−(∇u�R

IJL
·LIJL )LIJL + (uJL −uI )

|�IJL |
LIJL

)
(22)

Using the new surface flux approximation given by Equation (18) and Equation (22), we can
redefine Equation (5) as

Ndom∑
R=1

( ∑
L I (�R )

F
�∗

R
IJL

·C�R
IJL

+ ∑
L I (�R )

F�
IJL ·D�R

IJL

)
=

Ndom∑
R=1

f �R
I V�R

I (23)

and Ndom refers to the number of domains that surrounds node I , and the term f �R
I stands for the

distributed source term associated with the volume V�R
I within the sub-domain �R .

The expression above is built in a sub-domain by sub-domain basis (i.e. looping over sub-
domains) in order to formally guarantee that the nodal gradients and fluxes are correctly approxi-
mated for each material along interface edges. It is worthy mentioning that the present approach is
exact when the analytical solution for the scalar field u varies linearly, even for non-homogeneous
materials, being far superior to formulations that use arithmetic or volume averaged procedures
to associate permeabilities or other physical coefficients to edges [10, 12]. In the present EBFV
formulation, even if the diffusion tensor is symmetric, the resulting system of equations, which has
been solved using a simple sparse Gauss elimination solver, is in general, non-symmetric due to
the inclusion of the cross diffusion terms. In some particular cases, for instance, when the media
is isotropic and meshes are orthogonal, the resulting system of equations is symmetric.

4. ERROR EVALUATION

In order to evaluate the accuracy of the procedure used to compute the pressure field for problems
with discontinuous and anisotropic coefficients, we define the asymptotic truncation error as [18]

‖Eh‖=Chq +O(hq+1) (24)

where h is the mesh spacing, q is the order of the error, which represents the convergence rate
and C is a constant that is independent of h, and ‖·‖ is some specified norm. In this case, the
convergence rate q is estimated as

q∼= log2
‖Eh‖

‖Eh/2‖ (25)
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Following References [14, 18], the convergence rates were estimated using the following discrete
norms: the maximum norm, ‖E‖MAX, the L2 norm, ‖E‖L2 and the root mean square (RMS) norm,
‖E‖RMS, which are respectively computed as

‖E‖MAX=‖û−u‖LMAX =MAX‖û I −uI‖, I =1, . . . ,NP (26)

‖E‖L2 =‖û−u‖L2 =
(

N P∑
I=1

((û I −uI )
2VI )

)1/2

(27)

‖E‖RMS=‖û−u‖LRMS =
(

N P∑
I=1

(û I −uI )
2
/

NP

)1/2

(28)

where u is the exact solution, û is the approximate solution and NP is the number of nodes of the
computational mesh.

5. EXAMPLES

In this section we present the solutions obtained using the EBFV formulation described here for
four benchmark problems found in literature and for which there are analytical and/or numerical
solutions [14, 18–20]. In order to discretize the computational domain and evaluate the accuracy
of the method, for the first three examples with smooth solutions, we have used a sequence of
structured triangular or quadrilateral meshes with NP=(9×9), (17×17), (33×33) and (65×65),
where N is the number of mesh nodes, and in which the triangular meshes were obtained by
splitting quadrilaterals into two triangles, implying on triangular meshes with twice the number of
elements but with the same number of nodes (i.e. CV). Numerical solutions were evaluated using
the error norms and convergence rates defined in the previous section. For the fourth example,
adapted from [20] to show the behavior of the method to solve a problem with high anisotropic
non-smooth solution, we have used only an unstructured triangular mesh with NP=(19×19).

5.1. Homogeneous and isotropic media

This problem, which involves the solution of an elliptic equation in homogeneous and isotropic
media, was presented in Reference [19], who solved it using two different methods: the tradi-
tional control volume finite element (CVFE) method, and the so-called control volume function
approximation (CVFA) method, which is a locally conservative method in which different type of
interpolation functions, such as splines, are used in the approximation process. In compact form,
the problem can be described by the following equations:

∇(K˜ ∇u)=2�2 cos(�x)cos(�y) for 0<x<1 and 0<y<1 (29)

where the diffusion coefficient K˜ is defined by

K˜ =
(
1 0

0 1

)
(30)
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and boundary conditions are given by

∇u ·n˜ = 0 for x=0, x=1 and 0<y<1

u = cos(�x) for 0<x<1 and y=0

u = −cos(�x) for 0<x<1 and y=1

(31)

The periodic analytical solution for this problem is u=cos(�x)cos(�y) defined throughout the
unitary square domain �=(0,1)2. Figure 2 shows the scalar field u obtained using the (65×65)
triangular mesh, which is in excellent agreement with the analytical solution.

In Tables I and II, we present the numerical errors and the convergence rates obtained in
Reference [19], using the CVFE and the CVFA methods, respectively. In Table III, we present the
errors and the convergence rates we have obtained using the EBFV method. As it can be seen, the
three methods are second-order accurate for the scalar variable u, the results are similar, and our
results compare slightly favorably to both the CVFE and the CVFA methods.

Figure 2. Elliptic equation with isotropic and continuous diffusion coefficient: scalar field u obtained with
the EBFV using a (65×65) triangular mesh.

Table I. Numerical solution of the elliptic equation in homogeneous and isotropic
media: errors and convergence rates for the CVFE [19].

N ‖E‖L2 qL2 ‖E‖MAX qMAX

8 1.57e−002 — 3.30e−002 —
16 4.00e−003 1.9757 8.77e−003 1.9138
32 1.00e−004 1.9939 2.25e−003 1.9625
64 2.51e−004 1.9985 5.69e−004 1.9827
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Table II. Numerical solution of the elliptic equation in homogeneous and isotropic
media: errors and convergence rates for the CVFA [19].

N ‖E‖L2 qL2 ‖E‖MAX qMAX

8 1.21e−002 — 3.23e−002 —
16 3.00e−003 2.0199 8.35e−003 1.9531
32 7.45e−004 2.0087 2.10e−003 1.9875
64 1.85e−004 2.0050 5.27e−004 1.9968

Table III. Numerical solution of the elliptic equation in homogeneous and isotropic
media: errors and convergence rates for the EBFV.

N ‖E‖L2 qL2 ‖E‖MAX qMAX

8 5.18e−003 — 8.35e−003 —
16 1.23e−003 2.0738 2.13e−003 1.9727
32 3.01e−004 2.0327 5.35e−004 1.9936
64 7.50e−005 2.0147 1.34e−004 1.9985

5.2. Homogeneous and non-isotropic media

This problem was originally proposed by Crumpton in Reference [14], who solved it using cell-
centered FCFV (Table IV). Hyman et al. [18] also solved this problem using the so-called mimetic
finite differences formulations (MMFD) (Table V). Again, the considered domain is a unitary
square, �=(0,1)2, with numeric Dirichlet boundary conditions extracted from the exact solution,
which is given by u=exy . In compact form, this problem can be described by

∇(K˜ ∇u)=−2(1+x2+xy+ y2)exy (32)

where the diffusion tensor K˜ is given by

K˜ =
(
2 1

1 2

)
(33)

Figures 3(a) and (b) show, respectively, the initial triangular mesh with (9×9) nodes and the
contours of the scalar field u for this mesh. As it can be seen in Table VI, the results obtained with
our EBFV formulation are essentially second-order accurate in space. Besides, they are similar
and compare favorably with those obtained in References [14, 18].

5.3. Non-homogeneous and non-isotropic media

The following example, which was originally presented in Reference [14], consists in a unity square,
�=(0,1)2, formed by two different materials. In fact, numerical Dirichlet boundary conditions are
obtained from the exact solution. Crumpton [14] solved this problem using a FCFV with structured
orthogonal quadrilateral meshes. The problem can be compactly defined by

∇(K˜ ∇u)= f (x, y) (34)
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Table IV. Numerical solution of the elliptic equation in homogeneous and
anisotropic media: errors and convergence rates for the FCFV [14].

N ‖E‖RMS qRMS

9 1.16e−003 —
17 2.89e−004 2.0050
33 7.28e−005 1.9891
65 1.83e−005 1.9921

Table V. Numerical solution of the elliptic equation in homogeneous and anisotropic
media: errors and convergence rates for the MMFD [18].

N ‖E‖L2 qL2 ‖E‖MAX qMAX

9 — — — —
17 1.06e−003 — 3.74e−003 —
33 2.58e−004 2.0386 9.66e−004 1.9529
65 6.36e−005 2.0203 2.45e−004 1.9792

Figure 3. Homogeneous and anisotropic media: (a) triangular mesh (9×9) and (b) scalar field u.

Table VI. Numerical solution of the elliptic equation in homogeneous and
anisotropic media: errors and convergence rates for the EBFV.

N ‖E‖L2 qL2 ‖E‖MAX qMAX

9 — — — —
17 1.06e−003 — 3.74e−003 —
33 2.58e−004 2.0386 9.66e−004 1.9529
65 6.36e−005 2.0203 2.45e−004 1.9792
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where the discontinuous source term and the full tensor discontinuous diffusion coefficient are
given, respectively, by

f (x, y)=
{[−2sin(y)−cos(y)]�x−sin(y) for x�0

2�exp(x)cos(y) for x>0
(35)

and

K˜ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

0 1

)
for x<0

�

(
2 1

1 2

)
for x>0

(36)

where � controls the strength of the discontinuity (i.e. the jump in the material property) between
the two different regions. The exact solution for this problem, given in Reference [14], is also
presented in Equation (37).

u(x, y)=
{[2sin(y)+cos(y)]�x+sin(y) for x�0

exp(x)cos(y) for x>0
(37)

We have solved this problem using a sequence of uniform structured triangular and orthogonal
quadrilateral meshes with NP=(9×9), (17×17), (33×33) and (65×65) nodes. Figures 4(a)–(d)
present the iso-contours of the scalar function u(x, y) obtained by the EBFV method with the
(65×65) triangular mesh associated with �=1.0, �=10.0, �=100.0 and �=1000.0, respectively.

Tables VII–X present the RMS errors, ‖E‖RMS, and the convergence rates qRMS, for the four
different values of � obtained with the FCFV method of Crumpton [14] using orthogonal quadri-
lateral meshes, and the EBFV scheme using triangular and orthogonal quadrilateral meshes. As it
can be clearly observed in Tables VII–X, for this particular benchmark problem, despite the fact
that the increase of the strength of the discontinuity also increases the magnitude of the error for
both methods, the EBFV and the FCFV methods show second-order spatial accuracy for all values
of �. It can also be noted that for all tested cases, in terms of error norms, the EBFV scheme
performs slightly worst (using triangular meshes) and slightly better (using quadrilateral meshes)
than the FCFV method.

5.4. Homogeneous and non-isotropic problem with non-smooth solution

This last example was solved in Reference [20] using a cell-centered non-linear monotone finite
volume (NLMFV) designed specifically to produce monotonic solutions (i.e. it preserves the
positivity of the solution), in the presence of highly non-isotropic and heterogeneous mate-
rials. The computational domain consists in a unit square, with a square hole in the center
�=(0,1)2/[4/9,5/9]2 as shown in Figure 5. This problem can be briefly described as

∇(K˜ ∇u)= f (x, y) (38)

where

K˜ =
(
cos� −sin�

sin� cos�

)(
k1 0

0 k2

)(
cos� sin�

−sin� cos�

)
(39)
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Figure 4. Iso-contours of the scalar function u(x, y) obtained with the EBFV using a structured triangular
mesh (65×65) for different values of �: (a) �=1.0; (b) �=10.0; (c) �=100.0; and (d) �=1000.0.

with f (x, y)=0 and boundary conditions given by u=0 on the external boundary, and u=2 on
the internal boundary, i.e.

u = 0 for

{
0<x<1 and (y=0 or y=1)

0<y<1 and (x=0 or x=1)

u = 2 for

{ 4
9<x< 5

9 and (y= 4
9 or y= 5

9 )

4
9<y< 5

9 and (y= 4
9 or y= 5

9 )

(40)

We have solved this problem using two different values for the angle �=�/6 and �=5�/6.
The ratio k1/k2=1000. There is no analytical solution for this problem, but results should clearly
be bounded by boundary values throughout the domain (i.e. 0�u(x, y)�2), with no ‘overshoots’
(i.e. u(x, y)>2) or ‘undershoots’ (i.e. u(x, y)<0). We have used an unstructured triangular mesh
with an average mesh spacing of h≈ 1

18 . As it can be seen in Figure 6, our results are qualitatively
similar to those obtained with the NLMFV of Reference [20]. Even though the EBFV generates
no overshoots, it produces a reasonably amount of undershoots (almost 30% of non-Dirichlet
nodes), whereas the NLMFV produces some overshoots. In fact, for the unstructured mesh used
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Table VII. Numerical solution of the elliptic equation with anisotropic
and discontinuous diffusion coefficient with �=1.0. Errors and conver-
gence rates for the: (a) FCFV [14]; (b) EBFV—triangular meshes; and

(c) EBFV—quadrilateral meshes.

N ‖E‖RMS qRMS

(a) FCFV—quad. meshes.
9 3.33e−003 —
17 9.37e−004 1.8294
33 2.45e−004 1.9353
65 6.25e−005 1.9709

(b) EBFV—triang. meshes.
9 6.02e−003 —
17 1.50e−003 1.9989
33 3.77e−004 2.0012
65 9.40e−005 2.0014

(c) EBFV—quad. meshes.
9 3.19e−003 —
17 7.52e−004 2.0849
33 1.84e−004 2.0302
65 4.60e−005 1.9968

Table VIII. Numerical solution of the elliptic equation with anisotropic
and discontinuous diffusion coefficient with �=10.0. Errors and conver-
gence rates for the: (a) FCFV [14]; (b) EBFV—triangular meshes; and

(c) EBFV—quadrilateral meshes.

N ‖E‖RMS qRMS

(a) FCFV—quad. meshes.
9 1.62e−002 —
17 4.35e−003 1.9146
33 1.11e−003 1.9705
65 2.81e−004 1.9819

(b) EBFV—triang. meshes.
9 4.57e−002 —
17 1.17e−002 1.9569
33 2.98e−003 1.9829
65 7.49e−004 1.9925

(c) EBFV—quad. meshes.
9 4.27e−003 —
17 1.00e−003 2.0901
33 2.48e−004 2.0202
65 6.30e−005 1.9759

here, the minimum values for pressure were u=−0.050 for �=�/6, and u=−0.052 for �=5�/6,
respectively.

In order to improve the monotonicity of the solution, in Reference [20], authors suggest using
a different strategy (inverse distance weighting) for interpolating the scalar variable u throughout
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Table IX. Numerical solution of the elliptic equation with anisotropic and
discontinuous diffusion coefficient with �=100.0. Errors and conver-
gence rates for the: (a) FCFV [14]; (b) EBFV—triangular meshes; and

(c) EBFV—quadrilateral meshes.

N ‖E‖RMS qRMS

(a) FCFV—quad. meshes.
9 1.81e−001 —
17 4.74e−002 1.9330
33 1.21e−002 1.9699
65 3.04e−003 1.9929

(b) EBFV—triang. meshes.
9 4.40e−001 —
17 1.13e−001 1.9538
33 2.88e−002 1.9813
65 7.24e−003 1.9916

(c) EBFV—quad. meshes.
9 1.37e−002 —
17 3.26e−003 2.0699
33 7.96e−004 2.0364
65 1.97e−004 2.0149

Table X. Numerical solution of the elliptic equation with anisotropic and
discontinuous diffusion coefficient with �=1000.0. Errors and conver-
gence rates for the: (a) FCFV [14]; (b) EBFV—triangular meshes; and

(c) EBFV—quadrilateral meshes.

N ‖E‖RMS qRMS

(a) FCFV—quad. meshes.
9 1.83e−000 —
17 4.79e−001 1.9337
33 1.22e−001 1.9731
65 3.07e−002 1.9906

(b) EBFV—triang. meshes.
9 4.39e−000 —
17 1.13e−000 1.9536
33 2.87e−001 1.9812
65 7.22e−002 1.9915

(c) EBFV—quad. meshes.
9 1.46e−001 —
17 3.50e−002 2.0635
33 8.51e−003 2.0391
65 2.09e−003 2.0210

the domain, instead of using the more traditional linear interpolation technique. Besides, they have
also established that no overshoots are observed with the NLMFV when the sharp gradients of the
solution are aligned with the mesh edges. This example clearly shows that further improvements
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Figure 5. Geometry and unstructured triangular mesh used to solve the homogeneous and non-isotropic
problem with non-smooth solution.

Figure 6. Numerical solution for the homogeneous and non-isotropic problem with non-smooth solution:
(a) rotation angle �=�/6 and (b) rotation angle �=5�/6.

must be made to the EBFV if ones must guarantee monotone results for really challenging prob-
lems.

6. CONCLUSIONS

In the present paper we have presented some results on the accuracy of an edge-based node-
centered finite volume formulation (EBFV), which can be used to solve elliptic type equations with
highly discontinuous coefficients. These elliptic equations are quite common in heat conduction
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problems and flux flow through porous media, such as the two-phase flow of oil and water in
petroleum reservoirs and the transport of contaminants in aquifers. Full tensors (non-diagonal
diffusion coefficients) and flexible (unstructured) non-orthogonal meshes are naturally handled by
the EBFV formulation and the cross diffusion terms are properly computed. In order to show the
potential of the presented finite volume procedure, we have solved four benchmark problems that
involve diagonal and continuous, non-diagonal and continuous and non-diagonal and discontinuous
diffusion coefficients, as well as continuous and discontinuous distributed source terms, and a
problem with a highly non-smooth solution. In the first three cases, second-order accuracy for
the scalar variable (e.g. pressure) has been achieved using different discrete norms. The last
example has show that, in the case of non-smooth solutions, the EBFV does not formally guarantee
monotonocity and, certainly, further improvements can be made to the method. In the near future
we intend to study possible fixes for the lack of monotonicity of the method when dealing with
really challenging problems. Despite of the later remark, our results (not fully presented here) are
quite promising and compare favorably with other results found in literature.
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